Source code for sertit.rasters

# -*- coding: utf-8 -*-
# Copyright 2024, SERTIT-ICube - France, https://sertit.unistra.fr/
# This file is part of sertit-utils project
#     https://github.com/sertit/sertit-utils
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Raster tools

You can use this only if you have installed sertit[full] or sertit[rasters]
"""
import logging
from functools import wraps
from typing import Any, Callable, Optional, Union

import geopandas as gpd
import numpy as np
import xarray as xr
from shapely.geometry import Polygon

try:
    import rasterio
    import rioxarray
    from rasterio import MemoryFile, features
    from rasterio.enums import Resampling
    from rioxarray.exceptions import MissingCRS
except ModuleNotFoundError as ex:
    raise ModuleNotFoundError(
        "Please install 'rioxarray' to use the 'rasters' package."
    ) from ex

from sertit import geometry, logs, path, rasters_rio, vectors
from sertit.types import AnyPathStrType, AnyPathType, AnyRasterType, AnyXrDataStructure

MAX_CORES = rasters_rio.MAX_CORES
PATH_XARR_DS = AnyRasterType
LOGGER = logging.getLogger(logs.SU_NAME)

# NODATAs
UINT8_NODATA = rasters_rio.UINT8_NODATA
""" :code:`uint8` nodata """

INT8_NODATA = rasters_rio.INT8_NODATA
""" :code:`int8` nodata """

UINT16_NODATA = rasters_rio.UINT16_NODATA
""" :code:`uint16` nodata """

FLOAT_NODATA = rasters_rio.FLOAT_NODATA
""" :code:`float` nodata """


[docs] def get_nodata_value_from_xr(xds: AnyXrDataStructure) -> float: """ Retrieve the nodata from a xarray structure. Follow process as described here: https://corteva.github.io/rioxarray/stable/getting_started/nodata_management.html#Search-order-for-nodata-(DataArray-only): Args: xds (AnyXrDataStructure): Xarray structure to retrieve data from Returns: float: nodata """ try: nodata = xds.rio.encoded_nodata except AttributeError: nodata = None if nodata is None: nodata = xds.attrs.get("_FillValue") if nodata is None: nodata = xds.attrs.get("missing_value") if nodata is None: nodata = xds.attrs.get("fill_value") try: if nodata is None: nodata = xds.rio.nodata except AttributeError: pass return nodata
[docs] def get_nodata_value_from_dtype(dtype) -> float: """ Get default nodata value from any given dtype. Args: dtype: Dtype for the wanted nodata. Best if numpy's dtype. Returns: int: Nodata value Examples: >>> rasters.get_nodata_value_from_dtype("uint8") 255 >>> rasters.get_nodata_value_from_dtype("uint16") 65535 >>> rasters.get_nodata_value_from_dtype("int8") -128 >>> rasters.get_nodata_value_from_dtype("float") -9999 """ return rasters_rio.get_nodata_value_from_dtype(dtype)
[docs] def get_nodata_value(dtype) -> float: """ .. deprecated:: 1.41.0 Use :code:`get_nodata_value_from_dtype` instead. Get default nodata value: Args: dtype: Dtype for the wanted nodata. Best if numpy's dtype. Returns: float: Nodata value """ logs.deprecation_warning( "This function is deprecated. Use 'get_nodata_value_from_dtype' instead." ) return get_nodata_value_from_dtype(dtype)
[docs] def any_raster_to_xr_ds(function: Callable) -> Callable: """ Allows a function to ingest AnyRasterType and convert it into a xr.DataArray: - a path (:code:`Path`, :code:`CloudPath` or :code:`str`) - a :code:`xarray.Dataset` or a :code:`xarray.DataArray` - a :code:`rasterio.DatasetWriter` or :code:`rasterio.DatasetReader` - :code:`rasterio` dataset after reading, its array and metadata: (np.ndarray, dict) Args: function (Callable): Function to decorate Returns: Callable: decorated function Examples: >>> # Create mock function >>> @path_or_dst >>> def fct(ds): >>> read(ds) >>> >>> # Test the two ways >>> read1 = fct("path/to/raster.tif") >>> with rasterio.open("path/to/raster.tif") as ds: >>> read2 = fct(ds) >>> >>> # Test >>> read1 == read2 True """ @wraps(function) def wrapper(any_raster_type: AnyRasterType, *args, **kwargs) -> Any: """ Path or dataset wrapper Args: any_raster_type (AnyRasterType): Raster path or its dataset *args: args **kwargs: kwargs Returns: Any: regular output """ if any_raster_type is None: raise ValueError("'any_raster_type' shouldn't be None!") # By default, try with the input fct try: out = function(any_raster_type, *args, **kwargs) except Exception as ex: if isinstance(any_raster_type, xr.DataArray): # Should work with a DataArray raise ex elif isinstance(any_raster_type, xr.Dataset): # Try on every DataArray of the Dataset try: xds_dict = {} convert_to_xdataset = False for var in any_raster_type.data_vars: xds_dict[var] = function(any_raster_type[var], *args, **kwargs) if isinstance(xds_dict[var], xr.DataArray): convert_to_xdataset = True # Convert in dataset if we have DataArrays, else keep the dict if convert_to_xdataset: xds = xr.Dataset(xds_dict) else: xds = xds_dict return xds except Exception as ex: raise TypeError("Function not available for xarray.Dataset") from ex elif isinstance(any_raster_type, tuple): arr, meta = any_raster_type with MemoryFile() as memfile: with memfile.open( **meta, BIGTIFF=rasters_rio.bigtiff_value(any_raster_type) ) as ds: ds.write(arr.data) with rioxarray.open_rasterio( any_raster_type, masked=True, default_name=ds.name, chunks=kwargs.pop("chunks", True), ) as xds: out = function(xds, *args, **kwargs) else: # Get the path from the input if path.is_path(any_raster_type): name = str(any_raster_type) any_raster_type = str(any_raster_type) else: # For rasterio datasets, '.name' gives the path name = any_raster_type.name # Convert path or rasterio.dataset to xr.dataset with rioxarray.open_rasterio( any_raster_type, masked=True, default_name=name, chunks=kwargs.pop("chunks", True), ) as xds: out = function(xds, *args, **kwargs) return out return wrapper
[docs] def path_xarr_dst(function: Callable) -> Callable: """ .. deprecated:: 1.40.0 Use :py:func:`rasters.any_raster_to_xr_ds` instead. """ logs.deprecation_warning( "Deprecated 'path_xarr_dst' decorator. Please use 'any_raster_to_xr_ds' instead." ) return any_raster_to_xr_ds(function)
[docs] @any_raster_to_xr_ds def get_nodata_mask(xds: AnyXrDataStructure) -> np.ndarray: """ .. deprecated:: 1.36.0 Use :py:func:`rasters.get_data_mask` instead. """ logs.deprecation_warning("This function is deprecated. Use 'get_data_mask' instead") return get_data_mask(xds)
[docs] @any_raster_to_xr_ds def get_data_mask(xds: AnyXrDataStructure) -> np.ndarray: """ Get nodata mask from a xarray. .. WARNING:: Sets 1 where the data is valid and 0 where it is not! Args: xds (AnyXrDataStructure): Array to evaluate Returns: np.ndarray: Pixelwise nodata array Example: >>> diag_arr = xr.DataArray(data=np.diag([1, 2, 3])) >>> diag_arr.rio.write_nodata(0, inplace=True) <xarray.DataArray (dim_0: 3, dim_1: 3)> array([[1, 0, 0], [0, 2, 0], [0, 0, 3]]) Dimensions without coordinates: dim_0, dim_1 >>> >>> # Get the data mask from this array >>> get_data_mask(diag_arr) array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=uint8) """ nodata = xds.rio.nodata try: is_nan = np.isnan(nodata) except TypeError: is_nan = False if is_nan: nodata_pos = np.isnan(xds.data) else: nodata_pos = xds.data == nodata return np.where(nodata_pos, 0, 1).astype(np.uint8)
[docs] @any_raster_to_xr_ds def rasterize( xds: AnyRasterType, vector: Union[gpd.GeoDataFrame, AnyPathStrType], value_field: str = None, default_nodata: int = 0, **kwargs, ) -> AnyXrDataStructure: """ Rasterize a vector into raster format. Note that passing :code:`merge_alg = MergeAlg.add` will add the vector values to the given raster See: https://pygis.io/docs/e_raster_rasterize.html Use :code:`value_field` to create a raster with multiple values. If set to :code:`None`, the rtaster will be binary. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray, used as base for the vector's rasterization data (shape, etc.) vector (Union[gpd.GeoDataFrame, AnyPathStrType]): Vector to be rasterized value_field (str): Field of the vector with the values to be burnt on the raster (should be scalars). If let to None, the raster will be binary. default_nodata (int): Default nodata of the raster (outside the vector in the raster extent) Returns: AnyXrDataStructure: Rasterized vector Example: >>> raster_path = "path/to/raster.tif" >>> vec_path = "path/to/vector.shp" >>> rasterize(raster_path, vec_path, value_field="classes") """ # Use classic option arr, meta = rasters_rio.rasterize( xds, vector, value_field, default_nodata, **kwargs ) if len(arr.shape) != 3: arr = np.expand_dims(arr, axis=0) # Change nodata rasterized_xds = xds.copy(data=arr) rasterized_xds = set_nodata(rasterized_xds, nodata_val=meta["nodata"]) return rasterized_xds
@any_raster_to_xr_ds def _vectorize( xds: AnyRasterType, values: Union[None, int, list] = None, keep_values: bool = True, dissolve: bool = False, get_nodata: bool = False, default_nodata: int = 0, ) -> gpd.GeoDataFrame: """ Vectorize a xarray, both to get classes or nodata. If dissolved is False, it returns a GeoDataFrame with a GeoSeries per cluster of pixel value, with the value as an attribute. Else it returns a GeoDataFrame with a unique polygon. .. WARNING:: - If :code:`get_nodata` is set to False: - Your data is casted by force into np.uint8, so be sure that your data is classified. - This could take a while as the computing time directly depends on the number of polygons to vectorize. Please be careful. Else: - You will get a classified polygon with data (value=0)/nodata pixels. To Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray values (Union[None, int, list]): Get only the polygons concerning this/these particular values keep_values (bool): Keep the passed values. If False, discard them and keep the others. dissolve (bool): Dissolve all the polygons into one unique. Only works if values are given. get_nodata (bool): Get nodata vector (raster values are set to 0, nodata values are the other ones) default_nodata (int): Default values for nodata in case of non existing in file Returns: gpd.GeoDataFrame: Vector with the raster values (if dissolve is not set) """ # Manage nodata value uint8_nodata = 255 if get_nodata_value_from_xr(xds) is not None: nodata = uint8_nodata else: nodata = default_nodata if get_nodata: data = get_data_mask(xds) nodata_arr = None else: xds_uint8 = xds.fillna(uint8_nodata) data = xds_uint8.data.astype(np.uint8) # Manage values if values is not None: if not isinstance(values, list): values = [values] # If we want a dissolved vector, just set 1instead of real values arr_vals = 1 if dissolve else data if keep_values: true = arr_vals false = nodata else: true = nodata false = arr_vals # Update data array data = np.where(np.isin(data, values), true, false).astype(np.uint8) # Get nodata array nodata_arr = rasters_rio.get_data_mask( data, has_nodata=False, default_nodata=nodata ) if data.dtype != np.uint8: raise TypeError("Your data should be classified (np.uint8).") # WARNING: features.shapes do NOT accept dask arrays ! if not isinstance(data, (np.ndarray, np.ma.masked_array)): try: data = data.compute() except Exception: data = None if nodata_arr is not None and not isinstance( nodata_arr, (np.ndarray, np.ma.masked_array) ): nodata_arr = nodata_arr.compute() # Get shapes (on array or on mask to get nodata vector) shapes = features.shapes(data, mask=nodata_arr, transform=xds.rio.transform()) # Convert to geodataframe gdf = vectors.shapes_to_gdf(shapes, xds.rio.crs) # Return valid geometries gdf = geometry.make_valid(gdf) # Dissolve if needed if dissolve: gdf = gpd.GeoDataFrame(geometry=gdf.geometry, crs=gdf.crs).dissolve() return gdf
[docs] @any_raster_to_xr_ds def vectorize( xds: AnyRasterType, values: Union[None, int, list] = None, keep_values: bool = True, dissolve: bool = False, default_nodata: int = 0, ) -> gpd.GeoDataFrame: """ Vectorize a :code:`xarray` to get the class vectors. If dissolved is False, it returns a GeoDataFrame with a GeoSeries per cluster of pixel value, with the value as an attribute. Else it returns a GeoDataFrame with a unique polygon. .. WARNING:: - Your data is casted by force into np.uint8, so be sure that your data is classified. - This could take a while as the computing time directly depends on the number of polygons to vectorize. Please be careful. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray values (Union[None, int, list]): Get only the polygons concerning this/these particular values keep_values (bool): Keep the passed values. If False, discard them and keep the others. dissolve (bool): Dissolve all the polygons into one unique. Only works if values are given. default_nodata (int): Default values for nodata in case of non existing in file Returns: gpd.GeoDataFrame: Classes Vector Example: >>> raster_path = "path/to/raster.tif" >>> vec1 = vectorize(raster_path) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> vec2 = vectorize(ds) >>> >>> # Assert those two approaches give the same result >>> vec1 == vec2 True """ return _vectorize( xds, values=values, keep_values=keep_values, dissolve=dissolve, get_nodata=False, default_nodata=default_nodata, )
[docs] @any_raster_to_xr_ds def get_valid_vector(xds: AnyRasterType, default_nodata: int = 0) -> gpd.GeoDataFrame: """ Get the valid data of a raster, returned as a vector. Pay attention that every nodata pixel will appear too. If you want only the footprint of the raster, please use :py:func:`rasters.get_footprint`. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray default_nodata (int): Default values for nodata in case of non-existing in file Returns: gpd.GeoDataFrame: Nodata Vector Example: >>> raster_path = "path/to/raster.tif" >>> nodata1 = get_nodata_vec(raster_path) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> nodata2 = get_nodata_vec(ds) >>> >>> # Assert those two approaches give the same result >>> nodata1 == nodata2 True """ nodata = _vectorize( xds, values=None, get_nodata=True, default_nodata=default_nodata ) return nodata[ nodata.raster_val != 0 ] # 0 is the values of not nodata put there by rasterio
[docs] @any_raster_to_xr_ds def get_nodata_vector( ds: rasters_rio.PATH_ARR_DS, default_nodata: int = 0 ) -> gpd.GeoDataFrame: """ Get the nodata vector of a raster as a vector. Pay attention that every nodata pixel will appear too. If you want only the footprint of the raster, please use :py:func:`rasters.get_footprint`. Args: ds (PATH_ARR_DS): Path to the raster, its dataset, its :code:`xarray` or a tuple containing its array and metadata default_nodata (int): Default values for nodata in case of non-existing in file Returns: gpd.GeoDataFrame: Nodata Vector Examples: >>> raster_path = "path/to/raster.tif" # Classified raster, with no data set to 255 >>> nodata1 = get_nodata_vec(raster_path) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> nodata2 = get_nodata_vec(ds) >>> >>> # Assert those two approaches give the same result >>> nodata1 == nodata2 True """ nodata = _vectorize(ds, values=None, get_nodata=True, default_nodata=default_nodata) return nodata[nodata.raster_val == 0]
[docs] @any_raster_to_xr_ds def mask( xds: AnyRasterType, shapes: Union[gpd.GeoDataFrame, Polygon, list], nodata: Optional[int] = None, **kwargs, ) -> AnyXrDataStructure: """ Masking a dataset: setting nodata outside of the given shapes, but without cropping the raster to the shapes extent. The original nodata is kept and completed with the nodata provided by the shapes. Overload of rasterio mask function in order to create a :code:`xarray`. The :code:`mask` function docs can be seen `here <https://rasterio.readthedocs.io/en/latest/api/rasterio.mask.html>`_. It basically masks a raster with a vector mask, with the possibility to crop the raster to the vector's extent. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray shapes (Union[gpd.GeoDataFrame, Polygon, list]): Shapes with the same CRS as the dataset (except if a :code:`GeoDataFrame` is passed, in which case it will automatically be converted) nodata (int): Nodata value. If not set, uses the ds.nodata. If doesnt exist, set to 0. **kwargs: Other rasterio.mask options Returns: AnyXrDataStructure: Masked array as a xarray Example: >>> raster_path = "path/to/raster.tif" >>> shape_path = "path/to/shapes.geojson" # Any vector that geopandas can read >>> shapes = gpd.read_file(shape_path) >>> mask1 = mask(raster_path, shapes) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> mask2 = mask(ds, shapes) >>> >>> # Assert those two approaches give the same result >>> mask1 == mask2 True """ # Use classic option arr, meta = rasters_rio.mask(xds, shapes=shapes, nodata=nodata, **kwargs) masked_xds = xds.copy(data=arr) if nodata: masked_xds = set_nodata(masked_xds, nodata) # Convert back to xarray return masked_xds
[docs] @any_raster_to_xr_ds def paint( xds: AnyRasterType, shapes: Union[gpd.GeoDataFrame, Polygon, list], value: int, invert: bool = False, **kwargs, ) -> AnyXrDataStructure: """ Painting a dataset: setting values inside the given shapes. To set outside the shape, set invert=True. Pay attention that this behavior is the opposite of the :code:`rasterio.mask` function. The original nodata is kept. This means if your shapes intersects the original nodata, the value of the pixel will be set to nodata rather than to the wanted value. Overload of rasterio mask function in order to create a :code:`xarray`. The :code:`mask` function docs can be seen `here <https://rasterio.readthedocs.io/en/latest/api/rasterio.mask.html>`_. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray shapes (Union[gpd.GeoDataFrame, Polygon, list]): Shapes with the same CRS as the dataset (except if a :code:`GeoDataFrame` is passed, in which case it will automatically be converted) value (int): Value to set on the shapes. invert (bool): If invert is True, set value outside the shapes. **kwargs: Other rasterio.mask options Returns: AnyXrDataStructure: Painted array as a xarray Example: >>> raster_path = "path/to/raster.tif" >>> shape_path = "path/to/shapes.geojson" # Any vector that geopandas can read >>> shapes = gpd.read_file(shape_path) >>> paint1 = paint(raster_path, shapes, value=100) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> paint2 = paint(ds, shapes, value=100) >>> >>> # Assert those two approaches give the same result >>> paint1 == paint2 True """ # Fill na values in order to not interfere with the mask function nodata = get_nodata_value_from_xr(xds) if nodata is not None: xds_fill = xds.fillna(nodata) else: xds_fill = xds # Use classic option arr, meta = rasters_rio.mask( xds_fill, shapes=shapes, nodata=value, invert=not invert, **kwargs ) # Create and fill na values created by the mask to the wanted value painted_xds = xds.copy(data=arr) painted_xds = painted_xds.fillna(value) # Keep all attrs after fillna painted_xds.rio.update_attrs(xds.attrs, inplace=True) painted_xds.rio.update_encoding(xds.encoding, inplace=True) # Set back nodata to keep the original nodata nodata = get_nodata_value_from_xr(xds) if nodata is not None: painted_xds = set_nodata(painted_xds, nodata) # Convert back to xarray return painted_xds
[docs] @any_raster_to_xr_ds def crop( xds: AnyRasterType, shapes: Union[gpd.GeoDataFrame, Polygon, list], nodata: Optional[int] = None, **kwargs, ) -> (np.ma.masked_array, dict): """ Cropping a dataset: setting nodata outside the given shapes AND cropping the raster to the shapes extent. Overload of `rioxarray.clip <https://corteva.github.io/rioxarray/stable/rioxarray.html#rioxarray.raster_array.RasterArray.clip>`_ function in order to create a masked_array. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray shapes (Union[gpd.GeoDataFrame, Polygon, list]): Shapes with the same CRS as the dataset (except if a :code:`GeoDataFrame` is passed, in which case it will automatically be converted) nodata (int): Nodata value. If not set, uses the ds.nodata. If doesn't exist, set to 0. **kwargs: Other :code:`rioxarray.clip` options Returns: AnyXrDataStructure: Cropped array as a xarray Examples: >>> raster_path = "path/to/raster.tif" >>> shape_path = "path/to/shapes.geojson" # Any vector that geopandas can read >>> shapes = gpd.read_file(shape_path) >>> xds2 = crop(raster_path, shapes) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> xds2 = crop(ds, shapes) >>> >>> # Assert those two approaches give the same result >>> xds1 == xds2 True """ if nodata: xds = set_nodata(xds, nodata) if isinstance(shapes, (gpd.GeoDataFrame, gpd.GeoSeries)): shapes = shapes.to_crs(xds.rio.crs).geometry if "from_disk" not in kwargs: kwargs["from_disk"] = True # WAY FASTER # Clip keeps encoding and attrs return xds.rio.clip(shapes, **kwargs)
def _any_raster_to_rio_ds(function: Callable) -> Callable: """ Specific declination of rasters_rio.any_raster_to_rio_ds for this specific case, handling the xarray object differently. Allows a function to ingest AnyRasterType and convert it into a rasterio.DatasetReader: - a path (:code:`Path`, :code:`CloudPath` or :code:`str`) - a :code:`rasterio.DatasetWriter` or :code:`rasterio.DatasetReader` - :code:`rasterio` dataset after reading, its array and metadata: (np.ndarray, dict) But returns directly any xarray object Args: function (Callable): Function to decorate Returns: Callable: decorated function Example: >>> # Create mock function >>> @any_raster_to_rio_ds >>> def fct(ds): >>> read(ds) >>> >>> # Test the two ways >>> read1 = fct("path/to/raster.tif") >>> with rasterio.open("path/to/raster.tif") as ds: >>> read2 = fct(ds) >>> >>> # Test >>> read1 == read2 True """ @wraps(function) def wrapper(any_raster_type: AnyRasterType, *args, **kwargs) -> Any: """ any_raster_to_rio_ds wrapper Args: any_raster_type (AnyRasterType): Raster path or its dataset *args: args **kwargs: kwargs Returns: Any: regular output """ try: out = function(any_raster_type, *args, **kwargs) except Exception as ex: if path.is_path(any_raster_type): with rasterio.open(str(any_raster_type)) as ds: out = function(ds, *args, **kwargs) elif isinstance(any_raster_type, tuple): arr, meta = any_raster_type from rasterio import MemoryFile with MemoryFile() as memfile: with memfile.open( **meta, BIGTIFF=rasters_rio.bigtiff_value(arr) ) as ds: ds.write(arr) out = function(ds, *args, **kwargs) else: # Try if xarray is importable try: if isinstance(any_raster_type, (xr.DataArray, xr.Dataset)): try: file_path = any_raster_type.encoding["source"] with rasterio.open(file_path) as ds: out = function(ds, *args, **kwargs) except Exception: # Return given xarray object return any_raster_type else: raise ex except Exception: raise ex return out return wrapper
[docs] @_any_raster_to_rio_ds def read( ds: AnyRasterType, resolution: Union[tuple, list, float] = None, size: Union[tuple, list] = None, window: Any = None, resampling: Resampling = Resampling.nearest, masked: bool = True, indexes: Union[int, list] = None, chunks: Union[int, tuple, dict] = "auto", as_type: Any = None, **kwargs, ) -> AnyXrDataStructure: """ Read a raster dataset from a : - :code:`xarray` (compatibility issues) - :code:`rasterio.Dataset` - :code:`rasterio` opened data (array, metadata) - a path. The resolution can be provided (in dataset unit) as: - a tuple or a list of (X, Y) resolutions - a float, in which case X resolution = Y resolution - None, in which case the dataset resolution will be used Uses `rioxarray.open_rasterio <https://corteva.github.io/rioxarray/stable/rioxarray.html#rioxarray-open-rasterio>`_. For Dask usage, you can look at the `rioxarray tutorial <https://corteva.github.io/rioxarray/stable/examples/dask_read_write.html>`_. Args: ds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray resolution (Union[tuple, list, float]): Resolution of the wanted band, in dataset resolution unit (X, Y) size (Union[tuple, list]): Size of the array (width, height). Not used if resolution is provided. window (Any): Anything that can be returned as a window (i.e. path, gpd.GeoPandas, Iterable, rasterio.Window...). In case of an iterable, assumption is made it corresponds to geographic bounds. For pixel, please provide a rasterio.Window directly. resampling (Resampling): Resampling method masked (bool): Get a masked array indexes (Union[int, list]): Indexes of the band to load. Load the whole array if None. Starts at 1 like GDAL. chunks (int, tuple or dict): Chunk sizes along each dimension, e.g., 5, (5, 5) or {'x': 5, 'y': 5}. If chunks is provided, it used to load the new DataArray into a dask array. Chunks can also be set to True or "auto" to choose sensible chunk sizes according to dask.config.get("array.chunk-size"). as_type (Any): Type in which to load the array **kwargs: Optional keyword arguments to pass into rioxarray.open_rasterio(). Returns: Union[AnyXrDataStructure]: Masked xarray corresponding to the raster data and its metadata Example: >>> raster_path = "path/to/raster.tif" >>> xds1 = read(raster_path) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> xds2 = read(ds) >>> >>> # Assert those two approaches give the same result >>> xds1 == xds2 True """ if window is not None: window = rasters_rio.get_window(ds, window) # Get new height and width new_height, new_width, do_resampling = rasters_rio.get_new_shape( ds, resolution, size, window ) # Read data (and load it to discard lock) with xr.set_options(keep_attrs=True): with rioxarray.set_options(export_grid_mapping=False): with rioxarray.open_rasterio( ds, default_name=path.get_filename(ds.name), chunks=chunks, **kwargs ) as xda: orig_dtype = xda.dtype # Windows if window is not None: xda = xda.rio.isel_window(window).load() # Indexes if indexes is not None: if not isinstance(indexes, list): indexes = [indexes] # Open only wanted bands if 0 in indexes: raise ValueError("Indexes should start at 1.") ok_indexes = np.isin(indexes, xda.band) if any(~ok_indexes): LOGGER.warning( f"Non available index: {[idx for i, idx in enumerate(indexes) if not ok_indexes[i]]} for {ds.name}" ) xda = xda.isel( band=[idx - 1 for ok, idx in zip(ok_indexes, indexes) if ok] ) try: # Set new long name: Bands nb are idx + 1 xda.long_name = tuple( name for i, name in enumerate(xda.long_name) if i + 1 in indexes ) except AttributeError: pass # Manage resampling if do_resampling: factor_h = xda.rio.height / new_height factor_w = xda.rio.width / new_width # Manage 2 ways of resampling, coarsen being faster than reprojection # TODO: find a way to match rasterio's speed if factor_h.is_integer() and factor_w.is_integer(): xda = xda.coarsen(x=int(factor_w), y=int(factor_h)).mean() else: xda = xda.rio.reproject( xda.rio.crs, shape=(new_height, new_width), resampling=resampling, ) # Convert to wanted type if as_type: # Modify the type as wanted by the user # TODO: manage nodata and uint/int numbers xda = xda.astype(as_type) # Mask if necessary if masked: # Set nodata not in opening due to some performance issues xda = set_nodata(xda, ds.meta["nodata"]) # Set original dtype xda.encoding["dtype"] = orig_dtype return xda
[docs] @any_raster_to_xr_ds def write( xds: AnyXrDataStructure, path: AnyPathStrType, tags: dict = None, **kwargs ) -> None: """ Write raster to disk. (encapsulation of :code:`rasterio`'s function, because for now :code:`rioxarray` to_raster doesn't work as expected) Metadata will be created with the :code:`xarray` metadata (i.e. width, height, count, type...) The driver is :code:`GTiff` by default, and no nodata value is provided. The file will be compressed if the raster is a mask (saved as uint8). If not overwritten, sets the nodata according to :code:`dtype`: - :code:`uint8`: 255 - :code:`int8`: -128 - :code:`uint16`, :code:`uint32`, :code:`int32`, :code:`int64`, :code:`uint64`, :code:`int`: 65535 - :code:int16, :code:`float32`, :code:`float64`, :code:`float128`, :code:`float`: -9999 Default parameters - Compress with :code:`LZW` option by default. To disable it, add the :code:`compress=None` parameter. - :code:`predictor` set to `2` for float data, to `3` for interger data by default. To disable it, add the :code:`predictor=None` parameter. - :code:`tiled` set to `True` by default. - :code:`driver` is :code:`GTiff` by default. BigTiff option is set according to the estimated output weight Args: xds (AnyXrDataStructure): Path to the raster or a rasterio dataset or a xarray path (AnyPathStrType): Path where to save it (directories should be existing) **kwargs: Overloading metadata, ie :code:`nodata=255` or :code:`dtype=np.uint8` Examples: >>> raster_path = "path/to/raster.tif" >>> raster_out = "path/to/out.tif" >>> >>> # Read raster >>> xds = read(raster_path) >>> >>> # Rewrite it >>> write(xds, raster_out) """ # Prune empty kwargs to avoid throwing GDAL warnings/errors kwargs = {k: v for k, v in kwargs.items() if v is not None} # Manage dtype if "dtype" in kwargs: dtype = kwargs["dtype"] else: dtype = xds.dtype if isinstance(dtype, str): # Convert to numpy dtype dtype = getattr(np, dtype) xds.encoding["dtype"] = dtype # Write nodata xds.rio.write_nodata( kwargs.pop("nodata", get_nodata_value_from_dtype(dtype)), encoded=True, inplace=True, ) # WORKAROUND: Pop _FillValue attribute (if existing) if "_FillValue" in xds.attrs: xds.attrs.pop("_FillValue") # Default compression to LZW if "compress" not in kwargs: kwargs["compress"] = "lzw" if ( kwargs["compress"].lower() in ["lzw", "deflate", "zstd"] and "predictor" not in kwargs # noqa: W503 ): if xds.encoding["dtype"] in [np.float32, np.float64, float]: kwargs["predictor"] = "3" else: kwargs["predictor"] = "2" # Bigtiff if needed bigtiff = rasters_rio.bigtiff_value(xds) # Manage tiles if "tiled" not in kwargs: kwargs["tiled"] = True # Force GTiff kwargs["driver"] = kwargs.get("driver", "GTiff") # Write on disk xds.rio.to_raster( str(path), BIGTIFF=bigtiff, NUM_THREADS=MAX_CORES, tags=tags, **kwargs )
[docs] def collocate( reference: AnyXrDataStructure, other: AnyXrDataStructure, resampling: Resampling = Resampling.nearest, **kwargs, ) -> AnyXrDataStructure: """ Collocate two georeferenced arrays: forces the *other* raster to be exactly georeferenced onto the *reference* raster by reprojection. Args: reference (AnyXrDataStructure): Reference xarray other (AnyXrDataStructure): Other xarray resampling (Resampling): Resampling method Returns: AnyXrDataStructure: Collocated xarray Examples: >>> reference_path = "path/to/reference.tif" >>> other_path = "path/to/other.tif" >>> col_path = "path/to/collocated.tif" >>> >>> # Collocate the other to the reference >>> col_xds = collocate(read(reference_path), read(other_path), Resampling.bilinear) >>> >>> # Write it >>> write(col_xds, col_path) """ if isinstance(other, xr.DataArray): old_dtype = other.dtype collocated_xds = ( other.astype(reference.dtype) .rio.reproject_match(reference, resampling=resampling) .astype(old_dtype) ) else: collocated_xds = other.rio.reproject_match( reference, resampling=resampling, **kwargs ) # Bug for now, tiny difference in coords collocated_xds = collocated_xds.assign_coords( { "x": reference.x, "y": reference.y, } ) # Set back attributes and encoding collocated_xds.rio.update_attrs(other.attrs, inplace=True) collocated_xds.rio.update_encoding(other.encoding, inplace=True) return collocated_xds
[docs] @any_raster_to_xr_ds def sieve( xds: AnyRasterType, sieve_thresh: int, connectivity: int = 4 ) -> AnyXrDataStructure: """ Sieving, overloads rasterio function with raster shaped like an image: :code:`(1, h, w)`. .. WARNING:: Your data is casted by force into :code:`np.uint8`, so be sure that your data is classified. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray sieve_thresh (int): Sieving threshold in pixels connectivity (int): Connectivity, either 4 or 8 Returns: (AnyXrDataStructure): Sieved xarray Example: >>> raster_path = "path/to/raster.tif" # classified raster >>> >>> # Rewrite it >>> sieved_xds = sieve(raster_path, sieve_thresh=20) >>> >>> # Write it >>> raster_out = "path/to/raster_sieved.tif" >>> write(sieved_xds, raster_out) """ assert connectivity in [4, 8] # Use this trick to make the sieve work mask = np.squeeze(np.where(np.isnan(xds.data), 0, 1).astype(np.uint8)) data = np.squeeze(xds.data.astype(np.uint8)) # Sieve try: sieved_arr = features.sieve( data, size=sieve_thresh, connectivity=connectivity, mask=mask ) except TypeError: # Manage dask arrays that fails with rasterio sieve sieved_arr = features.sieve( data.compute(), size=sieve_thresh, connectivity=connectivity, mask=mask.compute(), ) # Set back nodata and expand back dim sieved_arr = sieved_arr.astype(xds.dtype) try: sieved_arr[np.isnan(np.squeeze(xds.data))] = np.nan except ValueError: # Manage integer files pass sieved_arr = np.expand_dims(sieved_arr, axis=0) sieved_xds = xds.copy(data=sieved_arr) return sieved_xds
[docs] def get_dim_img_path(dim_path: AnyPathStrType, img_name: str = "*") -> AnyPathType: """ Get the image path from a :code:`BEAM-DIMAP` data. A :code:`BEAM-DIMAP` file cannot be opened by rasterio, although its :code:`.img` file can. Args: dim_path (AnyPathStrType): DIM path (.dim or .data) img_name (str): .img file name (or regex), in case there are multiple .img files (i.e. for S3 data) Returns: AnyPathType: .img file Example: >>> dim_path = "path/to/dimap.dim" # BEAM-DIMAP image >>> img_path = get_dim_img_path(dim_path) >>> >>> # Read raster >>> raster, meta = read(img_path) """ return rasters_rio.get_dim_img_path(dim_path, img_name)
[docs] @any_raster_to_xr_ds def get_extent(xds: AnyRasterType) -> gpd.GeoDataFrame: """ Get the extent of a raster as a :code:`geopandas.Geodataframe`. Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray Returns: gpd.GeoDataFrame: Extent as a :code:`geopandas.Geodataframe` Example: >>> raster_path = "path/to/raster.tif" >>> >>> extent1 = get_extent(raster_path) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> extent2 = get_extent(ds) >>> >>> # Assert those two approaches give the same result >>> extent1 == extent2 True """ return vectors.get_geodf(geom=[*xds.rio.bounds()], crs=xds.rio.crs)
[docs] @any_raster_to_xr_ds def get_footprint(xds: AnyRasterType) -> gpd.GeoDataFrame: """ Get real footprint of the product (without nodata, *in french == emprise utile*) Args: xds (AnyRasterType): Path to the raster or a rasterio dataset or a xarray Returns: gpd.GeoDataFrame: Footprint as a GeoDataFrame Example: >>> raster_path = "path/to/raster.tif" >>> >>> footprint1 = get_footprint(raster_path) >>> >>> # or >>> with rasterio.open(raster_path) as ds: >>> footprint2 = get_footprint(ds) >>> >>> # Assert those two approaches give the same result >>> footprint1 == footprint2 True """ footprint = get_valid_vector(xds) return geometry.get_wider_exterior(footprint)
[docs] def merge_vrt( crs_paths: list, crs_merged_path: AnyPathStrType, abs_path: bool = False, **kwargs, ) -> None: """ Merge rasters as a VRT. Uses :code:`gdalbuildvrt`. See here: https://gdal.org/programs/gdalbuildvrt.html Creates VRT with relative paths ! This function handles files of different projection by create intermediate VRT used for warping (longer to open). All VRTs will be written with relative paths. Args: crs_paths (list): Path of the rasters to be merged with the same CRS crs_merged_path (AnyPathStrType): Path to the merged raster abs_path (bool): VRT with absolute paths. If not, VRT with relative paths (default) kwargs: Other gdlabuildvrt arguments Example: >>> paths_utm32630 = ["path/to/raster1.tif", "path/to/raster2.tif", "path/to/raster3.tif"] >>> paths_utm32631 = ["path/to/raster4.tif", "path/to/raster5.tif"] >>> >>> mosaic_32630 = "path/to/mosaic_32630.vrt" >>> mosaic_32631 = "path/to/mosaic_32631.vrt" >>> >>> # Create mosaic, one per CRS or not (longer to open) >>> merge_vrt(paths_utm32630, mosaic_32630) >>> merge_vrt(paths_utm32631, mosaic_32631, {"-srcnodata":255, "-vrtnodata":0}) """ return rasters_rio.merge_vrt(crs_paths, crs_merged_path, abs_path, **kwargs)
[docs] def merge_gtiff(crs_paths: list, crs_merged_path: AnyPathStrType, **kwargs) -> None: """ Merge rasters as a GeoTiff. .. WARNING:: They should have the same CRS otherwise the mosaic will be false ! Args: crs_paths (list): Path of the rasters to be merged with the same CRS crs_merged_path (AnyPathStrType): Path to the merged raster kwargs: Other rasterio.merge arguments. More info `here <https://rasterio.readthedocs.io/en/latest/api/rasterio.merge.html#rasterio.merge.merge>`_ Example: >>> paths_utm32630 = ["path/to/raster1.tif", "path/to/raster2.tif", "path/to/raster3.tif"] >>> paths_utm32631 = ["path/to/raster4.tif", "path/to/raster5.tif"] >>> >>> mosaic_32630 = "path/to/mosaic_32630.tif" >>> mosaic_32631 = "path/to/mosaic_32631.tif" >>> >>> # Create mosaic, one by CRS ! >>> merge_gtiff(paths_utm32630, mosaic_32630) >>> merge_gtiff(paths_utm32631, mosaic_32631) """ return rasters_rio.merge_gtiff(crs_paths, crs_merged_path, **kwargs)
[docs] def unpackbits(array: np.ndarray, nof_bits: int) -> np.ndarray: """ Function found `here <https://stackoverflow.com/questions/18296035/how-to-extract-the-bits-of-larger-numeric-numpy-data-types>`_ Args: array (np.ndarray): Array to unpack nof_bits (int): Number of bits to unpack Returns: np.ndarray: Unpacked array Example: >>> bit_array = np.random.randint(5, size=[3,3]) array([[1, 1, 3], [4, 2, 0], [4, 3, 2]], dtype=uint8) >>> >>> # Unpack 8 bits (8*1, as itemsize of uint8 is 1) >>> unpackbits(bit_array, 8) array([[[1, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0]], [[0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]], [[0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0]]], dtype=uint8) """ return rasters_rio.unpackbits(array, nof_bits)
[docs] def read_bit_array( bit_mask: Union[xr.DataArray, np.ndarray], bit_id: Union[list, int] ) -> Union[np.ndarray, list]: """ Read bit arrays as a succession of binary masks (sort of read a slice of the bit mask, slice number :code:`bit_id`) Args: bit_mask (np.ndarray): Bit array to read bit_id (int): Bit ID of the slice to be read Example: read the bit 0 of the mask as a cloud mask (Theia) Returns: Union[np.ndarray, list]: Binary mask or list of binary masks if a list of bit_id is given Example: >>> bit_array = np.random.randint(5, size=[3,3]) array([[1, 1, 3], [4, 2, 0], [4, 3, 2]], dtype=uint8) >>> >>> # Get the 2nd bit array >>> read_bit_array(bit_array, 2) array([[0, 0, 0], [1, 0, 0], [1, 0, 0]], dtype=uint8) """ if isinstance(bit_mask, xr.DataArray): bit_mask = bit_mask.data return rasters_rio.read_bit_array(bit_mask, bit_id)
[docs] def read_uint8_array( bit_mask: Union[xr.DataArray, np.ndarray], bit_id: Union[list, int] ) -> Union[np.ndarray, list]: """ Read 8 bit arrays as a succession of binary masks. Forces array to :code:`np.uint8`. See :py:func:`rasters.read_bit_array`. Args: bit_mask (np.ndarray): Bit array to read bit_id (int): Bit ID of the slice to be read Example: read the bit 0 of the mask as a cloud mask (Theia) Returns: Union[np.ndarray, list]: Binary mask or list of binary masks if a list of bit_id is given """ return read_bit_array(bit_mask.astype(np.uint8), bit_id)
[docs] def set_metadata( naked_xda: xr.DataArray, mtd_xda: xr.DataArray, new_name=None ) -> xr.DataArray: """ Set metadata from a :code:`xr.DataArray` to another (including :code:`rioxarray` metadata such as encoded_nodata and crs). Useful when performing operations on xarray that result in metadata loss such as sums. Args: naked_xda (xr.DataArray): DataArray to complete mtd_xda (xr.DataArray): DataArray with the correct metadata new_name (str): New name for naked DataArray Returns: xr.DataArray: Complete DataArray Example: >>> # xda: some xr.DataArray >>> sum = xda + xda # Sum loses its metadata here <xarray.DataArray 'xda' (band: 1, y: 322, x: 464)> array([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., 2., nan, nan], [nan, nan, nan, ..., 2., nan, nan], [nan, nan, nan, ..., 2., nan, nan]]]) Coordinates: * band (band) int32 1 * y (y) float64 4.798e+06 4.798e+06 ... 4.788e+06 4.788e+06 * x (x) float64 5.411e+05 5.411e+05 ... 5.549e+05 5.55e+05 >>> >>> # We need to set the metadata back (and we can set a new name) >>> sum = set_metadata(sum, xda, new_name="sum") <xarray.DataArray 'sum' (band: 1, y: 322, x: 464)> array([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., 2., nan, nan], [nan, nan, nan, ..., 2., nan, nan], [nan, nan, nan, ..., 2., nan, nan]]]) Coordinates: * band (band) int32 1 * y (y) float64 4.798e+06 4.798e+06 ... 4.788e+06 4.788e+06 * x (x) float64 5.411e+05 5.411e+05 ... 5.549e+05 5.55e+05 spatial_ref int32 0 Attributes: (12/13) grid_mapping: spatial_ref BandName: Band_1 RepresentationType: ATHEMATIC STATISTICS_COVARIANCES: 0.2358157950609785 STATISTICS_MAXIMUM: 2 STATISTICS_MEAN: 1.3808942647686 ... ... STATISTICS_SKIPFACTORX: 1 STATISTICS_SKIPFACTORY: 1 STATISTICS_STDDEV: 0.48560665546817 STATISTICS_VALID_PERCENT: 80.07 original_dtype: uint8 """ try: naked_xda.rio.write_crs(mtd_xda.rio.crs, inplace=True) except MissingCRS: pass if new_name: naked_xda = naked_xda.rename(new_name) naked_xda.rio.update_attrs(mtd_xda.attrs, inplace=True) naked_xda.rio.update_encoding(mtd_xda.encoding, inplace=True) naked_xda.rio.set_nodata(mtd_xda.rio.nodata, inplace=True) return naked_xda
[docs] def set_nodata(xda: xr.DataArray, nodata_val: Union[float, int]) -> xr.DataArray: """ Set nodata to a xarray that have no default nodata value. In the data array, the no data will be set to :code:`np.nan`. The encoded value can be retrieved with :code:`get_nodata_value_from_xr`. Args: xda (xr.DataArray): DataArray nodata_val (Union[float, int]): Nodata value Returns: xr.DataArray: DataArray with nodata set Example: >>> A = xr.DataArray(dims=("x", "y"), data=np.zeros((3,3), dtype=np.uint8)) >>> A[0, 0] = 1 <xarray.DataArray (x: 3, y: 3)> array([[1, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=uint8) Dimensions without coordinates: x, y >>> >>> A_nodata = set_nodata(A, 0) <xarray.DataArray (x: 3, y: 3)> array([[ 1., nan, nan], [nan, nan, nan], [nan, nan, nan]]) Dimensions without coordinates: x, y """ # Where removes encoding so save them and set them back in place encoding = xda.encoding # Set nodata in the array xda = xda.where(xda.data != nodata_val) # Set encoding back xda.rio.update_encoding(encoding, inplace=True) # Set nodata in the attributes and encoding xda.rio.write_nodata(nodata_val, encoded=True, inplace=True) return xda
[docs] def where( cond, if_true, if_false, master_xda: xr.DataArray = None, new_name: str = "" ) -> xr.DataArray: """ Overloads :code:`xr.where` with: - setting metadata of :code:`master_xda` - preserving the nodata pixels of the :code:`master_xda` If :code:`master_xda` is None, use it like :code:`xr.where`. Else, it outputs a :code:`xarray.DataArray` with the same dtype than :code:`master_xda`. .. WARNING:: If you don't give a :code:`master_xda`, it is better to pass numpy arrays to :code:`if_false` and :code:`if_true` keywords as passing xarrays interfers with the output metadata (you may lose the CRS and so on). Just pass :code:`if_true=true_xda.data` inplace of :code:`if_true=true_xda` and the same for :code:`if_false` Args: cond (scalar, array, Variable, DataArray or Dataset): Conditional array if_true (scalar, array, Variable, DataArray or Dataset): What to do if :code:`cond` is True if_false (scalar, array, Variable, DataArray or Dataset): What to do if :code:`cond` is False master_xda: Master :code:`xr.DataArray` used to set the metadata and the nodata new_name (str): New name of the array Returns: xr.DataArray: Where array with correct mtd and nodata pixels Example: >>> A = xr.DataArray(dims=("x", "y"), data=[[1, 0, 5], [np.nan, 0, 0]]) >>> mask_A = rasters.where(A > 3, 0, 1, A, new_name="mask_A") <xarray.DataArray 'mask_A' (x: 2, y: 3)> array([[ 1., 1., 0.], [nan, 1., 1.]]) Dimensions without coordinates: x, y """ # Enforce condition where_xda = xr.where(cond, if_true, if_false) if master_xda is not None: # Convert to master dtype if where_xda.dtype != master_xda.dtype: where_xda = where_xda.astype(master_xda.dtype) # Convert to datarray if needed if not isinstance(where_xda, xr.DataArray): where_xda = master_xda.copy(data=where_xda) # Set nodata to nan where_xda = where_xda.where(~np.isnan(master_xda)) # Set mtd where_xda = set_metadata(where_xda, master_xda, new_name=new_name) return where_xda
[docs] @any_raster_to_xr_ds def hillshade( xds: AnyRasterType, azimuth: float = 315, zenith: float = 45 ) -> AnyXrDataStructure: """ Compute the hillshade of a DEM from an azimuth and elevation angle (in degrees). Goal: replace `gdaldem CLI <https://gdal.org/programs/gdaldem.html>`_ NB: altitude = zenith References: - `1 <https://www.neonscience.org/resources/learning-hub/tutorials/create-hillshade-py>`_ - `2 <http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=How%20Hillshade%20works>`_ Args: xds (AnyRasterType): Path to the raster, its dataset, its :code:`xarray` or a tuple containing its array and metadata azimuth (float): Azimuth angle in degrees zenith (float): Zenith angle in degrees Returns: AnyXrDataStructure: Hillshade """ # Use classic option arr, meta = rasters_rio.hillshade(xds, azimuth=azimuth, zenith=zenith) return xds.copy(data=arr)
[docs] @any_raster_to_xr_ds def slope( xds: AnyRasterType, in_pct: bool = False, in_rad: bool = False ) -> AnyXrDataStructure: """ Compute the slope of a DEM (in degrees). Goal: replace `gdaldem CLI <https://gdal.org/programs/gdaldem.html>`_ Args: xds (AnyRasterType): Path to the raster, its dataset, its :code:`xarray` or a tuple containing its array and metadata in_pct (bool): Outputs slope in percents in_rad (bool): Outputs slope in radians. Not taken into account if :code:`in_pct == True` Returns: AnyXrDataStructure: Slope """ # Use classic option arr, meta = rasters_rio.slope(xds, in_pct=in_pct, in_rad=in_rad) return xds.copy(data=arr)